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Abstract. The spatial and temporal variation of concentration-discharge (C-Q) relationships inform solute and particulate 

export processes. Previous studies have shown that the extent to which baseflow contributes to streamflow can affect C-Q 

relationships in some catchments. However, these patterns have not yet been investigated across large spatial scales. To address 

this, the study aims to assess how baseflow contributions, as defined by the median catchment baseflow index (BFI_m), 20 

influence C-Q slopes across 157 catchments in Australia spanning five climate zones. This study focuses on six water quality 

variables: electrical conductivity (EC), total phosphorus (TP), soluble reactive phosphorus (SRP), total suspended solids (TSS), 

nitrate–nitrite (NOx) and total nitrogen (TN). The impact of baseflow contribution is explored with a novel Bayesian 

hierarchical model. 

We found that BFI_m has a strong impact on C-Q slopes. C-Q slopes are largely positive for nutrient species (NOx, TN, SRP 25 

and TP) and are steeper in catchments with higher BFI_m across all climate zones (for TN, SRP and TP). On the other hand, 

we also found a generally higher variation in instantaneous BFI for catchments with high BFI_m. Thus, the steeper C-Q slopes 

found in catchments with high BFI_m may be a result of a larger variation in water sources and flow pathways between low 

(baseflow-dominated) and high (quickflow-dominated) flow conditions. In contrast, catchments with low BFI_m may have 

more homogeneous flow pathways at both low and high flows, resulting in less variable concentrations and thus a flatter C-Q 30 

slope. Our model can explain over half of the observed variability in concentration of TSS, EC and P species across all 

catchments (93% for EC, 63% for TP, 63% for SRP, and 60% for TSS), while being able to predict C-Q slopes across space 

by BFI_m. This indicates that our parsimonious model has potential for predicting the C-Q slopes for catchments in different 

climate zones, and thus improving the predictive capacity for water quality across Australia. 

1 Introduction 35 

Understanding the causes of spatiotemporal variability in riverine chemistry is critical to support water quality management 

for both human and environmental end-uses. The relationship between the river chemistry and streamflow (concentration-

discharge, or C-Q relationship) often shows distinct patterns that are specific to water quality variables and catchments. These 

are determined by (i) the spatial distribution of constituent sources within the catchment; and (ii) the interplay between the 

biogeochemical and hydrological processes, which controls constituent mobilisation and transport through the catchment 40 

(Ebeling et al., 2021; Godsey et al., 2019; Musolff et al., 2015). The C-Q relationship therefore tells us about the key catchment 

processes controlling river water quality. As such, the C-Q relationship can help informing catchment management and 

mitigation strategies to improve catchment water quality (Dupas et al., 2019; Moatar et al., 2020). 

However, it is challenging to identify the key catchment processes from analysing C-Q relationships, due to the high variability 

in water quality across both space and time. First, water chemistry and streamflow characteristics can vary significantly across 45 

multiple spatial scales, from small headwater catchments (Dupas et al., 2021; Jensen et al., 2019; McGuire et al., 2014) to 

basin and continental scales (e.g., Dupas et al., 2019; Ebeling et al., 2021; Heiner M. et al. under review). Many previous 
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studies have assessed the spatial variations in C-Q relationships for nutrients, carbon and geogenic water quality variables, 

which identified land use and management, lithology, and topography as critical drivers for these spatial variations (e.g., 

Ebeling et al., 2021; Minaudo et al., 2019). Second, high-frequency water quality monitoring studies have shown high temporal 50 

variability in water chemistry (e.g., Kirchner et al., 2004; Rode et al., 2016). Besides variation in concentrations, recent high-

frequency monitoring also highlighted the high variability of C-Q relationships over time and especially between runoff events; 

these temporal changes are driven by a series of mechanisms such as chemical build-up and flushing under varying flow 

magnitudes, and contrasting baseflow contributions during different stages of runoff events (Bende-Michl et al., 2013; Knapp 

et al., 2020; Musolff A: et al.; Rusjan et al., 2008; Tunqui Neira et al., 2020). 55 

In the existing studies that explore the variation of C-Q relationships, hydrological characteristics of catchments have been 

highlighted as a key influencing factor, as it defines the flow pathways and magnitudes that are critical to the transport 

processes (Tunqui Neira et al., 2020a, 2020b). Several studies have highlighted that, within a particular catchment, the C-Q 

relationship (and thus export behaviour) is dependent on whether streamflow is dominated by baseflow or quickflow (Gorski 

& Zimmer, 2021; Knapp et al., 2020; Minaudo et al., 2019). However, there is little understanding of how the overall baseflow 60 

contribution of a catchment impacts the catchment’s C-Q relationship, and thus the catchment’s export regime. Further, most 

existing studies that explored the impact of baseflow contribution on C-Q relationships focused on catchments in temperate 

climates in Europe and North America (e.g., Gorski & Zimmer, 2021; Minaudo et al., 2019; Musolff et al., 2015). This leads 

to a limitation in transferring and systematically comparing findings to other climate zones and other parts of the world.  

The current knowledge gap in understanding catchment export regimes for regions other than Europe and North America was 65 

partially addressed in Lintern et al. (in review) and Liu et al. (in preparation), which explored C-Q metrics over a range of 

climate zones in Australia. Both studies highlighted consistencies in C-Q patterns across contrasting climates for individual 

water quality variables and suggested that the inherent properties of each water quality variable determine its C-Q relationships. 

However, the role of different baseflow contributions on C-Q relationships has not yet been examined.  

This study aims to assess the impact of catchment baseflow contribution on C-Q relationships of sediment, nutrients and salts 70 

across a large number of catchments within different climate zones in Australia. We hypothesise that catchments located in 

different climate zones would show very different ranges and distributions of baseflow contributions, leading to contrasted 

responses in terms of catchment export patterns, as represented by C-Q slopes. With this analysis we also hypothesise that the 

C-Q slopes in Australian catchments can be predicted across space by baseflow contribution. We test these hypotheses with a 

Bayesian hierarchical modelling approach, which will i) add new understanding to the sources and export patterns of water 75 

quality variables; ii) improve the predictive capacity of water quality variables by better prediction of C-Q relationships over 

space. 
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2 Method 

2.1 Data and study catchments 

2.1.1 Water quality and flow data 80 

This study relies on water quality and streamflow data collected across Australia by seven state agencies. These include: the 

Department of Land, Water and Planning (VIC DELWP, Victoria); WaterNSW (New South Wales); Department of Resources 

and Department of Environment and Science (QLD DNRME, Queensland); Department for Water and Environment (SA 

DEW, South Australia); Department of Water and Environmental Regulation (WA DER, Western Australia); Department of 

Primary Industries, Parks, Water and Environment (TAS DPIPWE, Tasmania) and Department of Environment, Parks and 85 

Water Security (NT DEPWS, Northern Territory).  

All available water quality data were obtained from all seven state agencies in late 2019 and collated into a single national-

scale database (see more details in Lintern et al., in review). Quality control of the data was performed using quality codes, 

flags and detection limits provided by individual state agencies. The dataset consists of a mixture of grab samples and high-

frequency (continuously measured) water quality data; a daily average is taken if more than one water quality sample was 90 

collected for any day at any site. This study focuses on six water quality variables: total suspended solids (TSS), total 

phosphorus (TP), soluble reactive phosphorus (SRP), total nitrogen (TN), nitrate–nitrite (NOx) and electrical conductivity 

(EC). These six variables have been included because they are of key concern for Australian riverine water quality and are 

well monitored across Australia both spatially and temporally, as illustrated in Lintern et al. (in review). 

For each monitoring site for the abovementioned six variables, we also obtained the corresponding available daily streamflow 95 

data. These daily streamflow data were obtained from the same seven state agencies as listed above. At each site, any missing 

or erroneous data were identified by quality code (as detailed in Table S1, Supplementary Materials) and removed for 

subsequent analyses. The daily streamflow data generally had good quality, with a < 5% median percentage of missing or 

erroneous data for individual water quality variables (Table S2, Supplementary Materials). These gaps and low-quality samples 

in the daily streamflow records were then filled in using streamflow modelled by the Australian Bureau of Meteorology 100 

(BoM)’s operational landscape water balance model (AWRA-L), which simulates daily streamflow across Australia (Frost et 

al., 2016).  

For this study, we focused only on monitoring sites (catchments) with water quality and flow data that satisfy the following 

criteria: 

1) Having over 50 pairs of corresponding concentration and flow data points; this is to ensure that the C-Q relationships 105 

observed are unaffected by outliers (Lintern et al., in review). 

2) Having water quality time-series that spans at least 3 years; this ensures that a wide range of water quality and flow 

conditions are captured (e.g., across different seasons, high and low flows). 
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3) At least 75% of the range of flow quantiles (with unconstrained bounds e.g., 5 to 80%, 10 to 85%) is covered by water 

quality samples; this ensures that C-Q relationships are not biased by samples obtained at high or low flows for 110 

individual catchments.  

We found a total of 157 sites (catchments) that met the above criteria across all the six water quality variables. As the monitored 

water quality variables vary between catchments, there were 50-83 catchments used to investigate each variable. These 

catchments are distributed across five main Australian climate zones as defined by Lintern et al. (in review): arid, 

Mediterranean, temperate, subtropical and tropical (Figure 1). A summary of the temporal coverage of water quality and flow 115 

data is provided in Figure S1 in the Supplementary Materials. Water quality data generally cover the full range of flow quantiles 

of individual catchments (Figure S2, Supplementary Materials). Some sites are biased towards high flows, which is likely due 

to i) monitoring priority for high flow events to better represent export loads; ii) practical constraints to sample low flows in 

intermittent rivers and ephemeral streams. 

 120 

Figure 1. Catchments included in study for each water quality variable (total number of catchments shown in panel titles). The 

colours denote five key climate zones in Australia. States and territories of Australia on the map are: New South Wales - NSW, 

Queensland - QLD, South Australia - SA, Tasmania - TAS, Victoria -VIC, Western Australia -WA, and Northern Territory - NT. 

2.1.2 Representing catchment baseflow contribution with baseflow index 

To represent the overall contribution of baseflow to total streamflow in each catchment and explore how this impacts the C-Q 125 

relationships across space, we used catchment baseflow index (BFI). BFI represents the proportion of discharge that occurs as 
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baseflow (Eckhardt, 2008; Lyne & Hollick, 1979; Nathan & McMahon, 1990; Zhang et al., 2017). We computed the catchment 

median BFI, BFI_m, based on daily BFIs derived from all flow records for each of the 157 catchments. The daily BFIs were 

estimated using a Lynne-Hollick baseflow filter with Alpha = 0.98 and a burn-in period of 30 days at both ends of the time 

series, as recommended for Murray-Darling Basin in the south-eastern Australia (Ladson et al., 2013), within which a large 130 

number of the study catchments are located. We expect that the BFI_m can represent the typical flow regime at a catchment-

level and differentiate between catchments with higher and lower baseflow contributions. In this way, we expect catchments 

with contrasting BFI_m to be dominated differently by surface flow and groundwater sources of water chemistry. Besides, 

BFI_m, we also computed the 10th and 90th percentiles of daily BFIs (BFI_l, BFI_h, respectively) for individual catchments to 

explore how the distribution of BFI of each catchment can affect C-Q relationships. 135 

2.2 Modelling the impacts of catchment baseflow contribution on concentration 

We developed a Bayesian hierarchical model (BHM) to explore the effect of catchment BFI on C-Q slope. The BHM is 

advantageous in its ‘borrowing power’ across space (Gelman et al., 2013; Webb & King, 2009), which is highly effective to 

explain variability in spatial-temporal data under data-limited situations. Bayesian modelling is also effective for incorporating 

uncertainty, which is necessary when analysing water quality data, as they are often associated with high uncertainty due to 140 

incomplete sampling of its natural variability (Guo et al., 2020; Liu et al., 2021). 

The model considered a classic C-Q relationship for any site s at any time-step t (Eqn. 1), where βs specifies the C-Q slope for 

a catchment (Godsey et al., 2009): 

log(𝐶𝑠,𝑡) = 𝛼𝑠 + 𝛽𝑠log(𝑄𝑠,𝑡)      (1) 

Our model used a modified version of Eqn. 1 based on previous literature on the effects of baseflow contribution on C-Q slopes 145 

within individual catchments (Gorski & Zimmer, 2021; Minaudo et al., 2019). We assume that for each water quality variable, 

the C-Q slopes of all catchments are following a normal distribution with a ‘grand mean’, β0. Then the variation of C-Q slopes 

between catchments, away from β0, are explained by changes in catchment BFI. The use of a mean C-Q slope is based on our 

preceding study, which suggested that for each water quality variable, export patterns (as represented by C-Q slopes) did not 

differ between climate zones (Lintern et al., in review). The model conceptualization is illustrated in Figure 2 with observed 150 

flow time series from two catchments and calculated baseflow (panel a) and median BFI (BFI_m) (panel b); panel c) illustrates 

the modelled catchment C-Q slope with BFI_m considered as the main predictor. Two alternative model versions were also 

developed to incorporate the impacts of BFI_l and BFI_h in the same way. 
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Figure 2. Illustration of conceptualization of the BFI-based C-Q models with two catchments, with the catchment median BFI 155 
(BFI_m) as the main predictor of C-Q slope. a) flow time-series with shaded regions showing the baseflow contribution; b) BFI time-

series and the corresponding BFI_m; and c) catchment C-Q relationships, in which the shift of C-Q slope of each catchment (β1, β2) 

away from the grand mean β0 is determined by BFI_m. Both time-series for the instantaneous flow and BFI (a) and b)) are only 

shown for one year for visualisation.  

Thus, the resultant catchment C-Q slope βs is:  160 

𝛽𝑠 = 𝛽0 + 𝐵𝐹𝐼_𝑚𝑠 × 𝛿𝐵𝐹𝐼𝑐𝑙𝑖𝑚𝑎𝑡𝑒     (2) 

In Eqn. 2, the model parameter, δBFIclimate, represents the effect of BFI_m on C-Q slope. This effect is considered as a climate-

specific parameter to assess whether the catchment BFI effects differ between climate. Such conceptualization of the BFI 

effects would then lead to a modified C-Q relationship for each catchment as: 

𝑙𝑜𝑔(𝐶𝑠,𝑡) = 𝛼𝑠 + (𝛽0 + 𝐵𝐹𝐼_𝑚𝑠 × 𝛿𝐵𝐹𝐼𝑐𝑙𝑖𝑚𝑎𝑡𝑒) × 𝑙𝑜𝑔(𝑄𝑠,𝑡)    (3) 165 

Equation 3 is the final form of the Bayesian hierarchical model, which was calibrated for each water quality variable across 

all catchments simultaneously to assess the impact of catchment BFI on C-Q slopes. The effects of BFI_l and BFI_h were 

explored with the same model structure. 

To calibrate the Bayesian model, we used the R package rstan (Stan Development Team, 2018). The package first sampled 

parameter values from the Bayesian prior distributions with Markov chain Monte Carlo, and then evaluated candidate models 170 

to derive the posterior parameter distributions. Each of the unknown model parameters, β0, αs and δBFIclimate, was independently 

derived by sampling from a minimally informative normal prior distribution of N(0,10) (Gelman et al., 2013; Stan 

Development Team, 2018). We used four independent Markov chains in each model run, with a total of 50,000 model iterations 
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for each chain. Convergence of the chains was ensured by checking the Rhat value (Sturtz et al., 2005), which is a rstan output 

that summarizes the consistency of the four Markov chains used in model calibration. Specifically, we ensured that the Rhat 175 

value is below 1.1, which suggested that the independent Markov chains have been well mixed and converged (Stan 

Development Team, 2018). 

The calibrated model interpretation focused on the performance and the model parameter δBFIclimate, which informed the 

climate-specific effects of catchment BFI on C-Q slopes. We specifically assessed the following model outputs (results 

presented in Section 3.3): 180 

1) Model performance: We assessed how well each BFI-based model (Eqn. 3) reproduced observed water quality with 

the Nash Sutcliffe Efficiency (NSE) (Nash & Sutcliffe, 1970). The NSE represents the proportion of observed 

variability that is explained by the model. As a benchmark, we also assessed the NSE of a baseline model which uses 

the classic C-Q relationship (Eqn. 1) observed for individual catchments to predict all water quality concentrations. 

This baseline model represents the best performance that can be achieved to predict concentration using the catchment 185 

C-Q slopes together with flow. Therefore, the baseline model provides an informative benchmark to assess the BFI-

based model. 

2) Modelled effects: We extracted the direction, magnitude and significance of the effects of catchment BFI from the 

posterior distribution of the calibrated model parameter, δBFIclimate, to assess the impact of catchment BFI on C-Q 

slope for each climate zone. 190 

3 Results and Discussions 

In this section, we first discuss the spatial variation in the median BFI across the study catchments (Section 3.1). We then 

provide some examples at specific catchments to illustrate how catchment BFI can affect C-Q relationship as a proof of concept 

(Section 3.2). Section 3.3 then presents the inferences made with the BFI-based C-Q model, focusing on the model performance 

in predicting water quality (Section 3.3.1), and we discuss the modelled effects of catchment BFI on C-Q slopes (Section 195 

3.3.2). Note we focus on the outputs from the model which used the catchment median BFI (BFI_m) as the main predictor; the 

models calibrated using BFI_l and BFI_h as predictors generally show consistent performance and results with that of BFI_m, 

and are presented in the Supplementary Materials. 

3.1 BFI across catchments 

The range of catchment low, median and high BFIs (BFI_l, BFI_m and BFI_h) for all catchments included in this study are 200 

summarized in Figure 3. The calculated BFIs are consistent with previous studies of BFI patterns in Australian catchments 

(Zhang et al., 2017) and do not seem to correlate with catchment area (Figure S3, Supplementary Material). Generally, 

temperate catchments have the highest BFI_m across all climates, while similar ranges of median BFIs are seen between the 
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other four climate zones (Figure 3 a)). The BFI_l and BFI_h have consistent distributions with the median BFI across climate 

zones. Considering the different catchments analysed between water quality variables, similar catchment BFI summaries were 205 

also generated for each water quality variable, and the BFI distributions are generally consistent across different variables 

(Figure S4, Supplementary Materials).  

  

Figure 3. a) Distribution of catchment low, median and high BFI (BFI_l, BFI_m, BFI_h) for each climate zone; b) range of 

instantaneous BFI (BFI_h – BFI_l) versus BFI_m. Both plots include all 157 catchments across six water quality variables studied. 210 
The corresponding versions of a) and b) for individual water quality variables are in Figure S4 and Figures S5 and S6 

(Supplementary Materials). 

It is also worth noting that catchments with high BFI_m are likely to have a higher variability of instantaneous BFI, as 

highlighted by the generally increasing differences between BFI_h and BFI_l with higher BFI_m (Figure 3 b)). The link 

between BFI_m and variability of instantaneous BFI suggests potentially different flow pathways for catchments with 215 

contrasting BFI_m. Specifically, a catchment with a low BFI_m tends to be associated with low instantaneous BFIs limited to 

a small range; thus, the catchment is likely to always have lower contributions of baseflow and higher contributions of surface 

flow, during both dry and wet conditions. In contrast, a catchment with a high BFI_m generally has a large range in 

instantaneous BFIs. This means that the catchment is more likely switching between groundwater contributions in dry 

conditions (high instantaneous BFI) and surface water contributions during wet conditions (low instantaneous BFI). Therefore, 220 

catchments with higher BFI_m are more likely dominated by different flow pathways under dry and wet conditions.  

3.2 Impact of BFI on C-Q slope: proof of concept 

Before presenting the modelled effects of catchment baseflow contribution on C-Q relationships, we show some examples of 

individual catchments to illustrate how C-Q relationships vary across catchments with BFI_m. We focus on the C-Q 

relationships of TSS for four catchments including two arid catchments (ARIDa, ARIDb) and two tropical catchments (TROPa, 225 

TROPb) (Figure 4). For each climate zone, we include one catchment with low BFI_m (ARIDa, TROPa) and another one with 

high BFI_m (ARIDb, TROPb), relative to the corresponding range of BFI_m for TSS (Figure S4). 
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 a)  b) 

Figure 4. C-Q relationships between TSS and flow for four individual catchments (in columns), including: a) two arid catchments 

(ARIDa, ARIDb); and b) two tropical catchments (TROPa, TROPb). Within each climate, a low-BFI and a high-BFI catchments 230 
are included, with the corresponding BFI_m shown in column titles. The top and middle rows for each catchment show a 3-year 

timeseries for the records of TSS concentrations and the continuous records of flow, with red dots showing the timesteps of water 

quality samples. The bottom row shows the C-Q relationship with all concentration and flow data at each catchment; the red dashed 

lines show the observed C-Q slope and the black dashed lines show the reference 1:1 line. All values plotted are in log-10 scale. 

Due to the particulate nature of TSS, we would expect the C-Q relationship to show strong a mobilisation behaviour that is 235 

enhanced during events (Musolff et al., 2015). Thus, catchments should have positive C-Q slopes, with a greater slope at a 

catchment with low BFI_m. However, our results show this is not always the case (Figure 4). The low-BFI arid catchment 

(ARIDa, BFI_m = 0.03) has a negative C-Q slope, whereas the high-BFI catchment (ARIDb, BFI_m = 0.21) shows a non-

linear C-Q relationship (in log-log space). The overall C-Q slope is positive, which however, consists of a negative slope for 

lower flows, followed by a positive slope when the flow passes a certain threshold. This is similar to the differences in C-Q 240 

slopes with high and low flows as seen in previous studies (e.g., Moatar et al., 2017), and suggests that the mobilisation 

behaviour for TSS is dependent on a threshold flow. 

Both tropical catchments (TROPa and TROPb) exhibit positive C-Q slopes that are relatively linear (in log-log space), where 

seasonal pattern in TSS concentration are in phase with those of streamflow. This highlights consistently strong mobilisation 

behaviours, with a greater positive C-Q slope for the catchment that has a higher baseflow contribution (TROPb, BFI_m = 245 

0.22). Overall, this preliminary analysis on a small subset of catchments suggests that BFI may indeed drive differences in C-

Q relationships between catchments, and that these effects may vary across climate zones.  
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3.3 Modelled results from the BFI-based C-Q model 

3.3.1 Model performance in predicting water quality 

The calibrated BFI-based C-Q model, when using catchment median BFI (BFI_m) as the predictor, can generally explain 50% 250 

of the observed variability for individual water quality variables (Table 1). For TP, TN, SRP and EC, the model can explain 

54-93% of the observed variability; the explanatory power is lower for TSS and TN (NSE of 0.50 and 0.47, respectively). 

Compared to the baseline model that predicts water quality with observed C-Q slopes for individual catchments (see details in 

Section 2.2), the BFI-based model has only marginally lower performance with 0.01-0.04 decreases in NSE across all water 

quality variables (Table 1, see Figures S7 and S10 in Supplementary Materials for corresponding plots of the model fit). This 255 

suggests that the BFI-based model, while having the capacity to predict C-Q slope across space, can predict water quality 

almost as well as using the observed C-Q slope. The good performance of the BFI-based model also suggests its suitability to 

derive inferences of the impacts of catchment BFI on C-Q slopes. Using BFI_l and BFI_h instead of BFI_m as the predictor 

only has minimal impacts on model performance (Table S3, Supplementary Materials). 

Table 1. Performance of the BFI-based model (with BFI_m as the main predictor) and the baseline model in predicting across all 260 
catchments for individual water quality variables (in rows), summarized as Nash Sutcliffe efficiency (NSE). The corresponding plots 

of the model fit are in Figures S7 and S10 in Supplementary Materials. 

Water quality variable BFI-based C-Q model Baseline model 

TSS 0.50 0.53 

TP 0.54 0.56 

SRP 0.62 0.64 

TN 0.47 0.50 

NOx 0.54 0.58 

EC 0.93 0.94 

 

3.3.2 Modelled effects of BFI on C-Q slope across Australia 

Our BFI-based C-Q model synthesized the patterns observed for individual catchments (as illustrated in Section 3.2) across 265 

the Australian continent. The model suggests that catchment median BFI, BFI_m, has significant influence on the C-Q slope 

for most climate zones and water quality variables, with some differences between climate zones. Figure 5 presents the median 

and the 95th credible intervals of these modelled impacts for each water quality variable, derived from the Bayesian posterior 

estimates of 𝛿𝐵𝐹𝐼𝑐𝑙𝑖𝑚𝑎𝑡𝑒 (Eqn. 3). The effect of catchment median BFI on C-Q slope is almost always significant, with the 

95th credible intervals not crossing over 0 for most combinations of water quality variables and climate zones.  270 
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Figure 5. Modelled effects of BFI_m on C-Q slope for each climate zone. The bars show the 95% credible interval (2.5th to 97.5th 

percentile) of modelled effect for each climate zone for each water quality variable, and the dots indicate the corresponding median 

levels. The colours indicate whether an effect is significantly positive, significantly negative, or non-significant; a positive effect 

means that C-Q slope increases with higher catchment BFI, and vice versa. Black dashed lines show zero-effect i.e. no effect at all. 275 

Figure 5 shows the directions of the impacts of catchment median BFI (BFI_m). To put the impacts of BFI into context, we 

show the modelled catchment C-Q slopes against the corresponding BFI_m values in Figure 6. Sediment and nutrients are 

largely dominated by mobilisation, as evidenced by the large proportion of positive C-Q slopes for TSS, TP, SRP, TN and 

NOx. In contrast, salts (EC) have largely negative C-Q slopes and are thus dominated by dilution. Regarding the effects of 

catchment BFI, we first note that for each water quality variable, the fitted relationships between C-Q slopes and BFI have a 280 

consistent ‘diverging’ pattern between climate zones. This is a result of our model structure, in which, for each water quality 

variable, all catchment C-Q slopes share a common ‘grand mean’ (Section 2.2), which represents the stable export patterns 

between climate zones as found in our preceding study (Lintern et al., in review). The deviation of slopes within each climate 

zone from the ‘grand mean’ is dependent on catchment BFI_m (Eqn. 2). Therefore, for catchments with low BFI_m, the 

differences in C-Q slopes between climate zones are smaller, and are all close to the ‘grand mean’. Conversely, the C-Q slopes 285 

of catchments with high BFI_m are affected more strongly by the differences between climate zones.  
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Figure 6. Catchment C-Q slope vs. catchment median BFI (BFI_m), coloured by climate zones. The lines represent the modelled C-

Q slope~BFI_m regression lines for individual climate zones, where BFI_m always has a significant impact on C-Q slope, based on 

the 95th credible intervals shown in Figure 5. The dots represent individual catchments. The black dashed lines mark a zero C-Q 290 
slope which differentiate mobilisation (C-Q slope>0) from dilution (C-Q slope<0). 

Across all six water quality variables and most climate zones, we found a general pattern that catchments with higher median 

BFI (BFI_m) tend to have steeper C-Q slopes (regardless of direction). This impact of BFI_m could be related to the negative 

correlation between BFI_m and the median concentrations combining with the low correlation between BFI_m and median 

flow (Figures S11 and S12, Supplementary Materials). The BFI effects are also unlikely related to longer travel times in larger 295 

catchments, as BFI_m is not correlated with catchment area (Figure S3). Considering export patterns, this result highlights an 

overall increase in i) mobilisation for sediment, nitrogen and phosphorus; and ii) dilution for salt, generally at catchments with 

higher baseflow contribution. In the subsequent discussions, we first detail the modelled effects for individual water quality 

variables, and then synthesise potential explanations related to catchment processes. 

For both TP and SRP, across all climate zones, most catchments have positive C-Q slopes. This slope is steeper for catchments 300 

with higher BFI_m for all climates. To further interpret the behaviour of particulate and soluble P, we extracted the SRP:TP 

ratios for all catchments with both SRP and TP timeseries (Figure S13). The SRP:TP ratios for most catchments are less than 

0.4, which suggests that TP is dominated by particulate forms across all catchments and climate zones. Combining this with 
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the positive effects of BFI_m seen for both SRP and TP, this suggests an overall mobilisation export pattern for both particulate 

and soluble P, which is more pronounced at rivers with higher baseflow contributions. 305 

For TN and NOx, the C-Q slopes are largely positive, and the modelling result suggests an increase in C-Q slope with BFI_m 

for most climate zones, except for subtropical (non-significant) and tropical (significantly negative) catchments for NOx. A 

large proportion of TN is present in particulate forms (Figure S14), with most catchments having NOx:TN ratios lower than 

0.25. The particulate-dominated TN and the responses of its C-Q slope to BFI_m highlight that particulate N is largely 

mobilised across all climate zones, which are enhanced with higher contributions of baseflow. For soluble N (NOx), the 310 

baseflow-driven mobilisation is also shown as an important pathway for arid, Mediterranean and temperate catchments. 

For TSS, most catchments have positive C-Q slopes, which increase with BFI_m in arid, subtropical and tropical climates; the 

effects of BFI_m are non-significant for Mediterranean and temperate catchments. This ‘enhancing’ effect of BFI_m on 

positive C-Q slopes (i.e. mobilisation) is largely consistent with the results for TP and TN, which are both largely particulate-

bound. 315 

EC exhibits mostly negative C-Q slopes, indicating an overall dilution export pattern. No tropical catchments were included 

due to insufficient data. A higher BFI_m led to a steeper negative C-Q slope for Mediterranean, subtropical and tropical 

catchments, but only has non-significant effect on C-Q slope for arid catchments. This result highlights stronger dilution 

behaviour at catchments with higher baseflow contribution, for Mediterranean, subtropical and tropical climates.  

In summary, the above results highlight an overall greater absolute value of C-Q slope at a catchment with higher baseflow 320 

contribution. For sediment (TSS) and nutrients (N and P species), we see an overall mobilisation behaviour across Australian 

catchments, which is stronger in catchments with higher baseflow contribution. For salts (EC), we see an overall dilution 

behaviour, which is also enhanced at baseflow dominated catchments. The potential processes are discussed subsequently and 

summarized in Figure 7. 
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 325 

Figure 7. Conceptual diagram of the modelled effect of baseflow contribution on C-Q slopes, for a catchment with low BFI_m 

(catchment a) and a catchment with high BFI_m (catchment b). 

For particulate water quality variables (TSS, and the largely particulate-bound part of TP and TN), our model result suggests 

that enhanced mobilisation in catchments with high BFI_m. This is a rather surprising result considering the dominance of 

surface flow in transporting particulates (Lintern et al., 2018). One potential explanation relates to the higher variability of 330 

instantaneous BFI seen in catchments with high BFI_m, as seen in Figure 3b. Specifically, catchments with lower BFI_m 

generally have narrower ranges of instantaneous BFI, which thus tend to always have low baseflow contributions (i.e. surface 

flow dominated) regardless of dry or wet conditions (Catchment a, Figure 7). This can lead to a limited range of water sources 

with small variation of flow pathways to transport water chemistry to rivers, resulting in a relative stable export pattern across 

low and high flows at these catchments. In contrast, catchments with higher BFI_m generally have higher variability in 335 

instantaneous BFI. This suggests higher variations in flow pathways, including surface flows dominance during wet period 

and subsurface flows dominance during dry period at these catchments (Catchment b, Figure 7). Consequently, these 

catchments can have a higher diversity of water sources and potentially larger gradients between groundwater-driven 

concentrations at low flow and runoff-driven concentrations at high flow.  

For soluble N and P (NOx and SRP), our results also suggest enhanced mobilisation in catchments with high BFI_m. In 340 

Australian catchments, soluble N and P concentrations in the groundwater are generally low (Cartwright, 2020). This discards 

the case of rich nutrient inputs in groundwater due to the legacy of long-term agricultural practices, which is often observed in 

agricultural catchments in Europe and North America (Van Meter et al., 2017; Stackpoole et al., 2019; Ehrhardt et al., 2018). 

Thus, steeper C-Q slopes in Australian catchments with higher BFI_m could be interpreted as the result of a larger connectivity 

between the stream and the vadose zone. However, as the case of TSS and particulate N and P, it is also plausible that the 345 
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enhanced mobilisation pattern seen in high BFI_m catchments rather results from the larger range of instantaneous BFI and 

thus more frequent mobilisation events. As discussed above, catchments with a greater variability in the instantaneous BFI are 

likely having greater gradients of concentrations for soluble N and P, between low groundwater-fed concentrations at low flow 

and high concentrations from surface/subsurface contributions at high flow. For the specific case of SRP, large oscillations of 

the groundwater table (which corresponds to large ranges of instantaneous BFI) were also shown to generate soil rewetting 350 

conditions favouring the release of soluble reactive P (Dupas et al., 2015; Gu et al. 2017). 

The enhanced dilution export for EC (e.g. steeper negative C-Q slopes) in catchments with high BFI_m suggests the key role 

of deep flow pathways, which were found in catchments that have high groundwater concentrations of major ions (e.g., Zhi et 

al., 2019). The weaker effect of baseflow contribution for the arid and Mediterranean catchments can be the result of the overall 

less pronounced dilution patterns. Previous studies have found that in semi-arid areas, high evapotranspiration can lead to 355 

higher concentration of major ions in soil water or shallow groundwater compared with surface water, resulting in C-Q slopes 

close to 0 (e.g., Herczeg et al., 2001; Li et al., 2017). 

Besides the abovementioned processes, another potential explanation for the modelled effects of BFI_m on C-Q relationships 

hypothesis is related to flow seasonality, which needs to be further explored. High baseflow contribution is generally found in 

more perennial catchments in Australia (Kennard et al., 2010), which might be associated with more clearly defined seasonal 360 

patterns in transporting water quality variables. These conditions are likely leading to well-defined C-Q relationships (Minaudo 

et al. 2019) and could result in steeper slopes compared to other catchments. In contrast, catchments with lower baseflow 

contribution are more likely driven by intermittent flow while lacking clear seasonal patterns, which leads to more scattered 

C-Q relationships. In this case, the absolute values of C-Q slopes tend to be close to 0 and these catchments often fall in the 

category of chemostatic with unclear export regimes (e.g. Godsey et al., 2009). However, we acknowledge that this hypothesis 365 

should be further tested, preferably with a subset of study catchments where high-frequency observations have been collected.  

In summary, our results highlight the potential to improve understanding of transport processes via the relationships between 

water quality and baseflow contributions. Our model proved BFI_m useful in predicting C-Q slopes across space (Section 

3.3.1), but also indicated that BFI_m may not be a suitable indicator to differentiate key flow pathways between catchments. 

Indeed, a high BFI_m may be associated with highly variable baseflow contributions involving both the surface and subsurface 370 

pathways, as illustrated in Figure 3 b). Therefore, a valuable avenue for future research would be to identify suitable BFI 

metrics to better represent the temporal dynamics of flow pathways to further improve the understanding of baseflow impacts 

on transport processes of water quality constituents. 

4 Conclusions 

In this study, a Bayesian hierarchical model was developed to understand the impacts of catchment baseflow contribution on 375 

C-Q slopes for six water quality parameters across Australia. These BFI-based models show good performances, which can 
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explain the majority of the observed variability in EC, SRP, TP, NOx and TSS (93, 62, 54, 54 and 50% explained, respectively) 

and almost half the observed variability for TN (47% explained). This highlights a potential parsimonious model that can be 

useful for predicting i) the C-Q slope across space; and ii) water quality for individual catchments, where flow data is available. 

Our model suggests significant influences of catchment baseflow contributions - as represented by catchment median BFI - on 380 

C-Q slopes across most water quality variables and climate zones. One of the important findings is that the C-Q slopes are 

largely positive for both particular and soluble N and P (NOx, TN, SRP and TP), and are steeper for catchments with higher 

median BFI across all climate zones (for TN, SRP and TP). The enhanced mobilisation at catchments with higher median BFI 

is likely a result of more variable flow pathways, which introduces higher concentration gradients between low and high flows 

that are dominated differently by groundwater and surface water sources. This result highlights the crucial role of flow 385 

pathways in determining catchment exports of water quality constituents, and the need of further studies to identify suitable 

baseflow metrics in differentiating flow pathways. The results also suggest a priority for managing and monitoring stream P 

and N, which should focus on catchments with the greater fluctuations in baseflow contributions.  

This study complements our preceding study on the impacts of other catchment characteristics - including land use, land cover, 

geology and climate - on C-Q slopes across Australia (Liu et al, in preparation). Further work should aim to synthesize the 390 

impacts of baseflow contribution and other spatial drivers by considering their interactions and establishing relative importance 

on influencing C-Q relationships. 

This study also highlights the effectiveness of Bayesian hierarchical models in interpreting water quality data across large 

spatial scales. Such a model is ideal to analyse water quality data over a large number of catchments, with high heterogeneity 

in temporal coverage and sampling frequency. This is particularly relevant for Australia, as water quality monitoring is often 395 

undertaken under different local/regional programs focusing on specific management interests. 

Data availability 

Water quality and flow data used this study are available upon request from seven Australian state agencies. These include: 
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